Pascal Notin
Pascal Notin
Research
Talks
1
Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval
Tranception combines large autoregressive transformers with inference-time retrieval to achieve SOTA performance on protein fitness …
Pascal Notin
,
Mafalda Dias
,
Jonathan Frazer
,
Javier Marchena-Hurtado
,
Aidan N. Gomez
,
Debora S. Marks
,
Yarin Gal
PDF
Cite
Code
Poster
Slides
Video
arXiv
Proceedings
HF Hub
ProteinGym
Design app (HF)
Design app (Colab)
RITA: a Study on Scaling Up Generative Protein Sequence Models
We introduce RITA, a suite of autoregressive generative models for protein sequences, with up to 1.2 billion parameters
Daniel Hesslow
,
Niccoló Zanichelli
,
Pascal Notin
,
Iacopo Poli
,
Debora Marks
PDF
Cite
Code
arXiv
Workshop
Improving black-box optimization in VAE latent space using decoder uncertainty
We use the epistemic uncertainty of the VAE decoder to guide the optimization of properties of high-dimensional structured objects …
Pascal Notin
,
José Miguel Hernández-Lobato
,
Yarin Gal
PDF
Cite
Code
Slides
arXiv
Video
Poster
Proceedings
Viral Evolution and Antibody Escape Mutations using Deep Generative Models
We leverage deep generative models of evolutionary sequences to predict viral escape mutations.
Nicole Thadani
,
Nathan Rollins
,
Sarah Gurev
,
Pascal Notin
,
Yarin Gal
,
Debora Marks
PDF
Workshop
Principled Uncertainty Estimation for High Dimensional Data
We introduce an importance sampling-based estimator to estimate the epistemic uncertainty of deep learning models for high-dimensional …
Pascal Notin
,
José Miguel Hernández-Lobato
,
Yarin Gal
PDF
Cite
Workshop
Cite
×